
Working with List Box Controls and
Selection Box Controls
List box controls and selection box controls contain a number of items. Both the controls and the items are dialog
elements; the controls are the parents of the items.

There are two ways of creating list box items and selection box items:

Use Natural code to create individual and multiple list box items dynamically; or
use the Dialog Editor (to add single or arrays of list box items and selection box items).

In Natural code, this may look like this:

Example:

 #AMOUNT := 5
 ITEM (1) := ’BERLIN’
 ITEM (2) := ’PARIS’
 ITEM (3) := ’LONDON’
 ITEM (4) := ’MILAN’
 ITEM (5) := ’MADRID’
 PROCESS GUI ACTION ADD-ITEMS WITH #LB-1 #AMOUNT #ITEM (1:5) GIVING #RESPONSE

You first specify the number of items you want to create, name the items, and use the PROCESS GUI statement
action ADD-ITEMS.

If you want to go through all items of a List Box Control to find out which ones are selected, it is advisable to use the
SELECTED-SUCCESSOR attribute because if a List Box Control contains a large number of items (100, for
example), this helps improve performance. If you use SELECTED-SUCCESSOR, you have one query instead of 100
individual queries if you use the attributes SELECTED and SUCCESSOR.

Example:

 /* Displays the STRING attribute of every SELECTED list-box item
 MOVE #LISTBOX.SELECTED-SUCCESSOR TO #LBITEM
 REPEAT UNTIL #LBITEM = NULL-HANDLE
 .../* STRING display logic

 MOVE #LBITEM.SELECTED-SUCCESSOR TO #LBITEM
 END-REPEAT

For performance reasons, you should not use the SELECTED-SUCCESSOR attribute to refer to the same dialog
element handle twice, because Natural goes through the list of item handles twice:

Example:

 /* Displays the STRING attribute of every SELECTED list-box item,
 /* but may be slow
 MOVE #LISTBOX.SELECTED-SUCCESSOR TO #LBITEM
 REPEAT UNTIL #LBITEM = NULL-HANDLE
 IF #LBITEM.SELECTED-SUCCESSOR = NULL-HANDLE /* Searches in the list of items
 IGNORE
 END-IF
 .../* STRING display logic
 MOVE #LBITEM.SELECTED-SUCCESSOR TO #LBITEM /* Searches in the list of items
 END-REPEAT /* for the second time

1Copyright Software AG 2003

Working with List Box Controls and Selection Box Controls<Untitled>

To avoid this problem, you use a second variable "#OLDITEM" besides "#LBITEM":

Example:

 /* Displays the STRING attribute of every SELECTED list-box item
 MOVE #LISTBOX.SELECTED-SUCCESSOR TO #LBITEM
 REPEAT UNTIL #LBITEM = NULL-HANDLE
 #OLDITEM = #LBITEM
 #LBITEM = #LBITEM.SELECTED-SUCCESSOR/* Searches in the list of items (once)
 IF #LBITEM = NULL-HANDLE
 IGNORE
 END-IF
 .../* Display logic using #OLDITEM.STRING
 END-REPEAT

If you retrieve the handle values of the selected items, a value other than NULL-HANDLE would normally be
returned by selected items. Such a handle value can also be returned by non-selected items if you assign
SELECTED-SUCCESSOR a value immediately before retrieving the SELECTED-SUCCESSOR value of a
non-selected item, as shown in the following example:

Example:

 ...
 PTR := #LB-1.SELECTED-SUCCESSOR
 PTR := NOT_SELECTEDHANDLE.SELECTED-SUCCESSOR
 IF NOT_SELECTEDHANDLE.SELECTED-SUCCESSOR = NULL-HANDLE THEN
 #DLG$WINDOW.STATUS-TEXT := ’NULL-HANDLE’
 ELSE
 COMPRESS ’NEXT SELECTION: ’ PTR.STRING TO #DLG$WINDOW.STATUS-TEXT
 END-IF
 ...

If you want to query whether a particular item in a List Box Control is selected, you get the best performance by
using the SELECTED attribute:

Example:

 #DLG$WINDOW.STRING:= #LB-1-ITEMS.SELECTED(3)

 Protecting Selection Box Controls and Input Field Controls

To prevent an end user from typing in input data in a selection box control or Input Field Control, you have several
possiblities, for example:

setting the MODIFIABLE attribute to FALSE for the dialog element, or
setting session parameter AD=P, or
using a control variable (CV).

If a sebox control is protected, it is still possible to select items; only values from the item list will be displayed in its
input field. If the STRING attribute is set to a value (dynamically or by initialisation) which is not in the item list, the
value will not be visible to the end user.

Back to Event-Driven Programming Techniques.

Copyright Software AG 20032

<Untitled>Working with List Box Controls and Selection Box Controls

	Working with List Box Controls and Selection Box Controls
	
	
	Protecting Selection Box Controls and Input Field Controls

